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1 Introduction

1.1 Motivation
Mechanical and electronic properties of engineered materials depend strongly on the
microstructure of the materials. Most civil engineering projects require high strength
steels, with a specific microstructure containing the right amount and size of crystal
grains and dispersions of hard and soft phases. In aerospace applications, where strength
to weight ratio is very important, lighter metals are strengthened by introducing grains
of heavier elements into their microstructure. Crystal defects and impurities also play an
important role in the electronic properties of materials.

Microstructure develops during solidification, solid state precipitation, and thermo-
mechanical processing and depends on the environmental conditions during these pro-
cesses. Figure 1.1 shows molten steel, which was cooled by a cool wall at the left side. In
the left panel, cooling was considerably slower than in the right panel and the secondary
dendrites are considerably larger. The mechanical properties depend strongly on the size
of the secondary dendrites. Realistic modeling of these processes under different envi-
ronmental conditions allows to predict and fine-tune material properties to suit a given
application. This work considers the phase field and phase field crystal methods, which
are used for modelling solidification processes.

Figure 1.1: Dendrites in a steel alloy. In both cases, the solidification occurred from left
to right. The steel was cooled much more rapidly on the right side and the dendritic
structure is clearly different. Figure taken from [1].
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1.2 Background and purpose of the project
This project was carried out during the author’s summer internship at the Multiscale
Statistical Physics group of Academy of Finland’s Center of Excellence in Computational
Nanoscience research (COMP) at the Department of Applied Physics, Aalto University.

The main objective was to improve the numerical performance of an optimization
algorithm, namely mechanical equilibration of the phase field crystal model. The perfor-
mance of the existing numerical algorithms was deemed too weak for practical purposes
calling for a significant speedup.
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I would like to thank Vili Heinonen and Cristian Achim for introducing me to the theoret-
ical and computational side of phase field modelling. I am especially grateful to Cristian
for all the comments and help regarding code development. I would also like to thank
Tapio for invaluable comments and discussions about the work.

Additionally, I am grateful to Aalto Science Institute and especially Jaako Järvinen
and Pekka Orponen for organizing the summer internship program and enabling me to
participate. And finally, I would like to thank other AScI interns, especially Kajetan
Stanski for interesting discussions throughout the summer.



2 Overview of the phase field crystal
model

2.1 Phase field methods
Phase field methods [2] are used to model systems involving an interface between multiple
phases, such as solidification or spinodal decomposition. Phase field systems are described
through an order parameter field φ(r), which describes the phase of the system at point
r. Two different constant values of φ(r) denote two different phases, whose interface
is described in a smooth interpolated manner. See Figure 2.1 for an example of a one
dimensional liquid-solid system, where the left side is in the solid phase and the right
side is in the liquid phase.

Figure 2.1: A schematic of a one-dimensional phase field of a liquid–solid system. The
left side is in the solid and the right side is in the liquid phase.

Another important quantity in the phase field framework is the free energy – a func-
tional of the order parameter field φ(r). A simple free energy functional, which describes
phase transformations can be modified from the Landau-Ginzburg free energy by adding
a symmetry breaking term and a surface term.1 It is given by

F [φ(r)] =

∫ [
1

4
φ(r)4 − τ

3
φ(r)3 +

∆B

2
φ(r)2 +

Bx

2
|∇φ(r)|2

]
dr, (2.1)

where the parameters τ , ∆B and Bx depend on the system characterstics and thermo-
dynamic conditions.

1See Eq. (2.50) in Ref. [3].
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(a)

(b)

Figure 2.2: Schematic of a one-dimensional PFC system. Each peak in the crystal phase
corresponds to one atom. Panel (a) shows a relaxed crystal, while in Panel (b) one atom
is displaced to the left from its equilibrium position.

2.2 Phase field crystal model
In the phase field crystal (PFC) model [1, 3], the phase field energy functional (Eq. 2.1)
is modified such that the energy is minimized by a periodic order parameter field ψ(r) in
the crystal phase, where each peak of the periodic function ψ corresponds to one atom.
This will allow the model to describe elasticity, plasticity and topological defects in the
crystal in addition to solid-liquid ordering. The modified energy functional is given by 2

F [ψ(r)] =

∫ [
ν

4
ψ(r)4 − τ

3
ψ(r)3 +

∆B

2
ψ(r)2 +

Bx

2
ψ(r)(1 +∇2)2ψ(r)

]
dr. (2.2)

Figure 2.2 shows the PFC equivalent of the phase field system shown in Figure 2.1.
The PFC approach allows to describe the elastic excitation of the system by introducing
a (spatially-varying) phase shift of the periodic field ψ. Additionally, in 2D and 3D
cases, topological defects, such as line dislocations can be represented3. As an example
see Figure 2.3 showing multiple line dislocations at a grain boundary.

2See Eq. (2.55) in Ref. [3].
3Vacancies are present in the phase field crystal framework. They are not confined on lattice sites

and hop around until they are diffused throughout the system, which results in a varying average density.
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(a) (b)

Figure 2.3: A 2D system with two grains and multiple line dislocation cores at the grain
boundary. Panel (a) shows ψ (the 2D equivalent of the blue line in Fig. 2.2) and Panel (b)
shows the envelope or the amplitude corresponding to the dashed green line in Fig. 2.2
(more specifically the sum of the magnitudes of ηj, see Section 2.3).

2.3 Amplitude expansion of the PFC model
The idea of the amplitude expansion of the PFC model [1, 3] is to describe the system
through the envelope or in other words, the amplitude of the periodic phase field ψ(r) (see
Figures 2.2 and 2.3 for ψ and its envelope). The advantage is that the envelope function
varies spatially much less rapidly than the PFC density ψ, which varies at atomistic
length scales allowing, for example, to use a considerably sparser numerical mesh for the
numerical calculations.

The PFC density can be approximated as

ψ(r) ≈ ρ(r) +
∑
j

[ηj(r)eiqj ·r + C.C.], (2.3)

where ρ(r) is a slowly varying "average" density4, ηj(r) are complex amplitudes of the
first modes of the periodic ψ(r) and qj are the primitive reciprocal lattice vectors. I
choose

q1 = (−
√

3/2,−1/2), q2 = (0, 1), q3 = (
√

3/2,−1/2), (2.4)

for the reciprocal lattice vectors qj, corresponding to 2D hexagonal crystal symmetry.
The system is described by the complex amplitudes

ηj(r) = φj(r) exp(iθj(r)). (2.5)

The magnitudes of the fields φj determine the magnitude of the oscillating mode cor-
responding to qj. The fields φj will be constant in perfect crystalline state and will be

4In this brief overview it is assumed that this is constantly zero, see [3] for complete description.
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reduced in case of crystal defects (e.g. dislocation cores). In the liquid state the fields φj

become zero. The complex phases θj(r) describe5 the displacement field u(r) as

θj(r) = −qj · u(r) +
1

3
∆θ, (2.6)

where ∆θ =
∑
j

θ and is nonzero only near crystal defects.

The energy functional of PFC defined by Eq. (2.2) in terms of the complex amplitudes
ηj is given by6

F [ηj(r)] =

∫ {
∆B

2
A2 +

3∑
j=1

Bx|Gjηj|2 − 4 Re

(
3∏

j=1

ηj

)
+

3ν

4
A4 − 3ν

2

3∑
j=1

|ηj|4
}
dr,

(2.7)
where A2 = 2

∑
j

|ηj|2 and Gj = ∇2 + 2iqj · ∇.

2.4 Dynamics and mechanical equilibrium
The dynamics of the statistical fields describing the system is assumed to be first order
dissipative driving the system to its minimum energy configuration. For the PFC density
ψ(r, t), the time evolution is given by7

∂ψ(r, t)

∂t
= ∇2 δF [ψ(r, t)]

δψ(r, t)
. (2.8)

The corresponding time evolution for the complex amplitudes ηj can be written as8

∂ηj(r, t)

∂t
= −δF [ηj(r, t)]

δη∗j (r, t)
, (2.9)

where
δF [ηj(r, t)]

δη∗j (r, t)
= (∆B +BxG2j )ηj − 2τ

∏
i 6=j

η∗j + 3ν(A2 − |ηj|2)ηj. (2.10)

One big advantage of the PFC model is that it can describe elastic excitations of
the crystal. Elastic excitations relax through emitting phonons (vibrations of the crystal
lattice), but it is impossible to describe this relaxation with first order diffusive dynamics
(given by Eq. (2.9)). One way to take this into account is to assume that the system
is in mechanical equilibrium at all times. This is a good assumption, as mechanical
relaxation happens much faster than diffusive processes. This translates into a mechanical
equilibrium constraint

δF (t)

δu
= 0, (2.11)

which must be satisfied at all times. The field u(r, t) is the displacement field, which can
be expressed through the complex phases θj, transforming the mechanical equilibrium

5Remember, as illustrated in Figure 2.2, the displacement of an atom was described by a local phase
shift in the periodic function ψ.

6Eq. (2.89) in [3].
7∇2 is needed to ensure that the density is conserved locally.
8Eq. (3.36) in [3].
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condition into the following form9

qj ·
3∑

k=1

qk Im

(
η∗k(r, t)

δF

δη∗k(r, t)

)
= 0. (2.12)

9This formulation also takes care of keeping ∆θ =
∑
j

θ constant during the equilibration procedure.



3 Numerical methods and simulations

3.1 Time-stepping for PFC dynamics
Solving Eq. (2.9) requires the use of a time-stepping scheme. Explicit time-stepping
schemes find the solution at the following moment directly by using the present state.
Implicit schemes require preconditioning, i.e. manipulation of the discrete equation before
iteration. Implicit methods are often preferred for their better numerical stability. I
introduce a semi-implicit time-stepping scheme previously used in the literature [3].

The partial differential equation (2.9) can be expressed as
∂ηj
∂t

= − δF
δη∗j

= −(Lηj +N (ηj)), (3.1)

where the right-hand side is divided into a linear operator L = ∆B + BxG2
j and a

nonlinear operator N (ηj) = −2τ
∏
i 6=j

η∗i + 3ν(A2 − |ηj|2)ηj.

To numerically solve the differential equation, the linear part is treated implicitly and
the nonlinear term explicitly giving

ηj(t+ ∆t)− ηj(t)
∆t

= −(Lηj(t+ ∆t) +N (t)). (3.2)

Using the Fourier transform of the operator Gj

F [Gj] = F [∇2 + 2iqj · ∇] = −k2 − 2qj · k (3.3)

the time stepping scheme given by Eq. (3.2) can be simplified as
η̂j(t+ ∆t)− η̂j(t)

∆t
= −L̂η̂j(t+ ∆t)− N̂ (t);

(1 + ∆tL̂)η̂j(t+ ∆t) = η̂j(t)−∆tN̂ (t);

η̂j(t+ ∆t) =
η̂j(t)−∆tN̂ (t)

1 + ∆tL̂
,

(3.4)

transforming the problem to a first order recurrence relation.

3.2 Mechanical equilibrium constraint as a numerical
optimization problem

When numerically evolving the phase field crystal system, the mechanical equilibration
constraint given by Eq. (2.12) can be formulated as a numerical optimization problem.
A numerical optimization algorithm is used to modify the phases θj(r) such that the
constraint holds. In practice, this optimization can be done with an interval of a number
of time steps without a significant loss of accuracy. See Chapter 4 for more details about
the numerical optimization algorithms.

8
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(a) (b)

Figure 3.1: Initial condition for the grain rotation calculation. (a) System schematic for
the grain rotation. A circle is rotated by an angle γ inside a perfect lattice. Figure taken
from [3]. (b) The magnitude

∑
|ηj| for the initial condition after 10000 PFC time steps

(given by Eq. 3.4).

3.3 Evaluating energy and mechanical equilibrium
constraint

For the numerical optimization algorithms and analysis, energy F given by Eq. (2.7) and
the mechanical equilibrium constraint defined by Eq. (2.12) and Eq. (2.10) need to be
numerically evaluated. In both of the expressions, most of the terms can be evaluated
directly from ηj(r) with the exception of the terms containing Gj = ∇2 + 2iqj · ∇. These
terms are evaluated in the Fourier space as

F [Gjηj] = (−k2 − 2qj · k)η̂j, (3.5)
F [G2j ηj] = (−k2 − 2qj · k)2η̂j. (3.6)

In principle, the terms containing Gj can also be evaluated by finite difference formulas
directly in real space, which can be computationally faster, but the drawback is reduced
accuracy. This was investigated in Appendix A and the reduced precision turned out to
be detrimental to the optimization algorithms. For the model system, spectral methods
were superior to real space methods in all regards.

3.4 Simulation of a rotated grain
I tested the computer codes and the optimization algorithms by calculating the time
evolution of a rotated crystalline grain. The schematic for the initial system can be
seen in Figure 3.1. The grain rotation angle was γ = 5.0◦. The complex amplitudes
magnitude was set as the perfect lattice equilibrium value at φ = 0.10867304595992146
and the parameters used are shown in Table 3.1. After the initial state, the system was
run for 100001 time steps without mechanical equilibration in order to form the grain
boundary.

After the initital setup, the system was evolved by repeatedly taking 80 time steps
and mechanically equilibrating the system. The evolution of the system at different times
can be seen in Figure 3.2.

1Much less steps could have been used here.
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Table 3.1: Parameters for the grain rotation simulation.

parameter value description
nx 384 grid size in x direction
ny 384 grid size in y direction
dx 2.0 space step in x dir.
dy 2.0 space step in y dir.
dt 0.125 time step
bx 1.0 Bx in Eq. (2.7)
bl 0.995 Bl = Bx −∆B
tt 0.585 τ
vv 1.0 ν
eq_freq 80 mech. equilibration frequency
eq_tol 7.5× 10−9 mech. equilibration tolerance

(a) Time: 2150 (b) Time: 5050 (c) Time: 8050 (d) Time: 11050 (e) Time: 14050

Figure 3.2: Evolution of the rotated grain at different times.

Figure 3.3: Time evolution of the square of the grain radius.

The grain area decreases linearly [3]. Figure 3.3 shows that including mechanical
equilibration considerably increases the contraction rate of the grain. It also tests the
Python and C++ codes against a previously used Fortran code. Additionally, it was
checked if decreasing the mechanical equilibration tolerance from 7.5× 10−9 to 3.0× 10−9

would considerably change the results. Figure 3.3 also shows that changing the tolerance
does not affect rate of contraction in a major way.



4 Mechanical equilibration algorithms

The mechanical equilibrium condition given by Eq. (2.12) can be formulated as an
unconstrained optimization problem, for which a lot of different algorithms exist.

In optimization, the goal is to find the configuration x, which (globally or locally1)
minimizes a scalar function J(x), where x is a vector of dimension n. In the minimum
point xX

∇J(xX) = 0. (4.1)

The numerical task is to iterate from an initial state x0 towards xX. Most algorithms
need to be able to evaluate J(x) and ∇J(x).

Condition in Eq. (2.12) can be thought of as a gradient that is zero at the configuration
θXj we are looking for, expressed as

qj ·
3∑

k=1

qk Im

(
η∗k
δF

δη∗k

)
≡ ∇G(θXj ) = 0. (4.2)

The function G(θj), however, is not needed to be known, as we can evaluate the energy
functional F [θj] of Eq. (2.7) to check for sufficient decrease or increase in G(θj).

4.1 Benchmark equilibration
To compare the performance of different optimization algorithms, I use the rotated grain
system introduced in Section 3.4. The initial setup of the rotated grain consists of 10000
PFC time steps followed by an initial mechanical equilibration. This initial equilibration
was not used as the benchmark equilibration because of the atypically long relaxation
time. Instead, the next equilibration, which was done after 80 PFC time steps, was
chosen to be the benchmark and most of the following results in this chapter show the
performance of the optimization algorithms for this benchmark optimization problem.

All of the algorithms were run on a single core of a laptop with an i5-3320M @
2.60GHz processor. The testing and benchmarking was done with the Python code (see
Section 5.1).

The error of the mechanical equilibration algorithms was estimated by evaluating the
1-norm of the mechanical equilibration condition2 (Eq. (4.2)) divided by the number of
components

ε =
1

3nxny

3∑
c=1

nx∑
i=1

ny∑
j=1

|∇Gc,i,j|, (4.3)

where nx and ny describe the number of spatial points in x and y directions. This gives
the average absolute value of the components of the gradient. Division in necessary to

1For mechanical equilibrium, we are searching for the local minimum.
2Or in other words, the norm of the "gradient".

11
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obtain similar error values for different system sizes. Another option would be to take
the maximum absolute value of the components of gradient. The tolerance, i.e. the value
of the error, when the optimization algorithm is terminated, was chosen to be 7.5× 10−9,
by observing the speed of the rotated grain convergence (see Figure 3.3), but this does
not guarantee the best energy convergence for most algorithms (see Section 4.6).

4.2 Steepest descent
The method of steepest descent is the simplest optimization method. It takes steps in
the direction of the negative gradient and is given by the following recurrence relation

xk+1 = xk − λk∇J(xk), (4.4)

where k is the iteration number and λk is the step length chosen such that F is minimized
in the gradient direction. This is done by a sub-algorithm called line search3. Line
search, however, requires multiple function and gradient evaluations and in the case of
computationally expensive evaluations it is often more efficient to use a predetermined
fixed step λ0. This is a common practice for example with machine learning algorithms.
Fast convergence favours a large step size but too large step sizes can make the algorithm
unstable.

For the benchmark equilibration, the step size was chosen to be λ0 = 1.0. Note that
for different parameters of the system (see Table 3.1; mainly depending on dx and dy),
the step size needs to be decreased for the algorithm to be stable. Perhaps the best way
to determine the step size is to run a line search steepest descent and then choose either
the most frequent step size or the minimum step size.

In addition, I tested the steepest descent algorithm with a line search. The line search
algorithm used takes exponentially increasing steps until a step with minimal energy is
found4. This search is fairly cheap compared to more robust searches and in general
does not work very well, as it can jump to different local minima. In our case, the
dimensionality and the physics of the problem prevent this sort of unwanted jumps.

The results are shown in Figure 4.1. The fixed step steepest descent took rougly
19000 seconds to reach the tolerance, while line search SD took considerably less, about
7000 seconds.

4.3 Nesterov’s accelerated gradient descent
Steepest descent algorithms have trouble navigating through ravines, i.e. areas where
the objective function varies considerably faster in some directions than the others. One
approach for alleviating this shortcoming of the steepest descent algorithm is to add
momentum to the descent. This is given by the following scheme:

vk = γvk−1 − λ∇J(xk), (4.5)
xk+1 = xk + vk. (4.6)

3Line search minimizes a function on a one dimensional line. To this end, there are multiple methods
[4].

4The initial step was chosen to be 1.0 and if this turned out to increase energy, the algorithm
exponentially searched for a shorter step.
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(a) Error convergence (b) Energy convergence

Figure 4.1: Steepest descent method. The dashed lines show the goal tolerance and
the corresponding energy at the goal tolerance (this energy can be different for different
algorithms). (The error for SD line search and the following algorithms fluctuate a lot,
short time scale fluctuations of the error are smoothed out in order to better present the
long time scale evolution of the error.)

(a) Error convergence (b) Energy convergence

Figure 4.2: Nesterov’s accelerated gradient descent. For the most suitable values of γ,
the algorithm reaches goal tolerance in 300 s. The algorithm "a-sd & LS" has similar
performance suggesting the use of the plain Nesterov’s algorithm.

An improvement to the simple momentum based method is the Nesterov’s accelerated
gradient descent [5] (simple overview is given in [6]), which is described by

vk = γvk−1 − λ∇J(xk + γvk−1), (4.7)
xk+1 = xk + vk. (4.8)

The results for mechanical equilibration for different values of γ are shown in Figure
4.2. Additionally, I tested a Nesterov’s algorithm with an occasional line search ("a-sd &
LS γ = 0.9"), a method with higher code complexity but similar performance. The step
length was chosen to be λ = 1.05. Figure 4.2 shows that the error reaches the tolerance
in about 300 seconds, about 19000/300 ≈ 63 times faster than steepest descent.

5But similarly to SD, it might need to be changed for different system parameters.
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4.4 L-BFGS
The limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm [4, 7, 8] is a quasi-
Newton method defined by

xk+1 = xk − λkHk∇J(xk), (4.9)

where Hk is an approximation of the inverse Hessian based on previous gradient evalua-
tions. The step size λk is generally found by a line search. In case of Newton’s method6,
the step size of λ = 1.0 will jump directly to the minimum of a quadratic function and
in theory this should also hold for the L-BFGS method, but in practice the algorithm
might not be stable and the step size needs to be reduced. Step sizes similar to steepest
descent fixed step can be used and can be determined by running a line search steepest
descent algorithm for a number of steps, for example.

The limited memory BFGS approximation to Hk needs to store m last steps of the
vectors sk = xk+1 − xk and yk = ∇Jk+1 − ∇Jk. The approximate Hk is calculated
using Algorithm 4.1, where ρk = 1/(yTk sk), H0

k is an initial approximation to the Hessian
(identity matrix for our case) and the final result is r = Hk∇Jk.

q = ∇Jk
for i = k − 1, k − 2, . . . , k −m do

αi = ρis
T
i q

q = q − αiyi
end
r = H0

kq
for i = k −m, k −m+ 1, . . . , k − 1 do

β = ρiy
T
i r

r = r + si(αi − β)
end

Algorithm 4.1: L-BFGS approximation evaluation. The final result is in variable
r = Hk∇Jk.

The equilibration results can be seen in Figure 4.3, which shows that the algorithm
with m = 3 performs worst, while others are on par. On the other hand, increasing
m requires additional memory suggesting using m = 5 for the computations. The en-
ergy convergence for the L-BFGS method is considerably better than for the accelerated
descent. The L-BFGS method, however, converges slower than the accelerated descent
in terms of error for low tolerance values like the dashed line (ε = 7.5× 10−9). Error
convergence is used as the stopping condition for the algorithms, so this determines the
computational performance.

In order to get a better error convergence for the L-BFGS, Nesterov’s accelerated
descent was used with a specified interval to reduce the error. The best performance is
achieved when L-BFGS steps are taken until the accelerated descent will reduce the error
below tolerance. In practice this cannot be guaranteed, but in case of a PFC calculation,
similar mechanical optimization problems are solved repeatedly and the same number of

6Completing a step of Newton’s method requires a solution of a linear system and for our problem,
where we seek to solve systems with up to 3× 5000× 5000 variables, this is infeasible unless the system
can be made sparse by for example finite difference equations, but this would introduce additional
restrictions.
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(a) Error convergence (b) Energy convergence

Figure 4.3: L-BFGS method for the benchmark equilibration. The error convergence of
the plain L-BFGS is slower than accelerated gradient descent for the given tolerance,
whereas the energy is lowered considerably faster. The enhanced L-BFGS converges also
fast in error.

Figure 4.4: Error convergence for L-BFGS and accelerated gradient descent for a system
size of 1024× 1024.

L-BFGS steps can be used as was needed in the previous equilibration7. Additionally a
line search was done at the start of the equilibration and also when accelerated descent
changed back to L-BFGS steps. The performance is seen in the same figure under the
label "L-BFGS enh" showing that the error convergence is on par with accelerated descent
but energy is much closer to the converged value.

The enchanced L-BFGS was compared with the Nesterov’s accelerated descent also
for a bigger system. All parameters are the same as for the benchmark equilibration,
except the system size was scaled up to 1024 × 1024 grid points. Additionally, this
equilibration was the first one after setting the initial condition and taking 80 PFC time
steps (as opposed to the second equilibration after initial setup for the benchmark). The
error convergence can be seen in Figure 4.4. The goal tolerance of L-BFGS was reached
in the third error reduction phase, which is not optimal, but it was still roughly twice
as fast as the accelerated gradient descent. This shows that L-BFGS scales considerably
better than the accelerated descent (and probably also the simple steepest descent) with
an increasing system size.

7For the first and second equilibration, a more specific search should be employed to find the best
interval of L-BFGS and Nesterov’s steps.
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(a) Error convergence (b) Energy convergence

Figure 4.5: Nonlinear conjugate gradients and Adadelta.

4.5 Other methods: NCG and Adadelta
This section will contain a brief overview of methods that were tested, but did not work
very well.

Nonlinear conjugate gradients (NCG) [7] is a popular optimization method, which
was implemented and tested with a fixed step size λ = 1.0.

Adadelta [9] is an optimization method that is used in machine learning to optimize
neural networks with a lot of different degrees of freedom. Due to expensive function
and gradient evaluations, it is designed to not need a line search and dynamically choose
the best step size based on previous changes in parameters and function values. The
parameters used for this run were ε = 1e−2, ρ = 0.9.

The results are shown in Figure 4.5. The performance of both algorithms is similar to
the steepest descent. One reason for the bad performance of NCG can be that it relies on
a line search and a fixed step size just does not work. Or perhaps neither of the methods
are suitable for the given problem.

4.6 Energy convergence of the algorithms
The energy should reach a converged value after an optimal equilibration. In the previous
energy convergence figures (e.g. Figure 4.1), the energy value goes below the dashed line
(which was the final energy of the steepest descent at tolerance 7.5× 10−9). Figure 4.6
shows the energy dependence as a function of the error for the benchmark equilibration
for a selection of algorithms. The converged energy value is clearly lower (by roughly
0.15× 10−9) than the value steepest descent reaches at tolerance 7.5× 10−9. The L-BFGS
algorithm reaches the converged energy value very quickly, but the error is large. The
benchmark equilibration might be special (and for most other quilibrations the energy
has converged at tolerance 7.5× 10−9) or this energy difference does not really affect the
evolution of the system, because the grain contraction time dependence was practically
the same for tolerances 7.5× 10−9 and 4.0× 10−9 (see Sec. 3.4).
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Figure 4.6: Energy convergence as a function of the error. All methods converge to a fixed
energy value at low error values. At smaller error values, the energies are considerably
different.



5 Code overview and usage

5.1 Python code
The full phase field crystal (PFC) code was written in Python 3 for convenient prototyping
and testing. All of the mechanical equilibration algorithms mentioned in this work were
implemented in the Python code. The code was tested to work with Python 3.4.3 and
3.5.1. Prerequisite libraries are numpy and matplotlib.

The code consists of three python files: main.py, equilibrium_algorithms.py
and equilibrium_algorithms_2.py. main.py contains the main PFC code with PFC
time stepping, energy calculation and mechanical equilibration constraint evaluation.
This file also contains the main function, which will call mechanical equilibration al-
gorithms. Files equilibrium_algorithms.py and equilibrium_algorithms_2.py

contain functions for all of the mechanical equilibrium algorithms mentioned in this work.
To use the code, the main function1 should be modified to suit the problem. An

example main function is presented in Listing 1. Parameters of the code can be changed
at the top of the main.py file. The parameters for mechanical equilibration algorithms,
such as the tolerance, can be changed in their respective function definitions.

5.2 C++ MPI code
Programs written in Python are relatively slow and the language does not have a con-
venient and fast message passing interface (MPI) fast Fourier transform (FFT) library.
Therefore, the full PFC simulation code was also written in C++ with MPI by utiliz-
ing FFTW, a popular FFT library with MPI support. The basic and more successful
mechanical equilibration algorithms were implemented, namely

• steepest descent (with fixed time step and with line search);

• accelerated gradient descent (with and without occasional line search);

• L-BFGS (and the enhanced version, with ACG error reduction and occasional line
search).

In addition to FFTW, OpenMPI is a prerequisite. The code was tested with OpenMPI
1.10.0, 1.10.2, 2.0.0 and FFTW 3.4.3. A Makefile is included to build and run the
program.

The code is written in an object oriented manner, to separate the mechanical equi-
libration code from the rest of the PFC code. The class PhaseField (declared in
pfc.h and defined in pfc.cpp) contains the parameters, initial system setup, energy

1The entry point of the program.

18
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1 def main():
2 # Allocate memory for the complex amplitudes
3 eta = np.zeros((3, nx, ny), dtype=np.complex128)
4
5 # Initialize state to rotated grain and calculate Fourier transform
6 init_state_circle(eta)
7 eta_k = np.fft.fft2(eta)
8
9 # Calculate derivative operators in k-space

10 calculate_coefficients_tile()
11
12 # Take 80 PFC time steps
13 for ts in range(80):
14 time_step(eta, eta_k)
15
16 # Run LBFGS algorithm for mechanical equilibration
17 equilibrium_algorithms_2.lbfgs_enh(
18 eta, calculate_energy, calc_grad_theta, nx, ny)
19 eta_k = np.fft.fft2(eta)
20
21 # Save state to file
22 np.save("./data/test_run/test", eta)

Listing 1: Example main function of the Python code. It takes 80 PFC time steps and
does one mechanical equilibration.

and gradient calculations, input-output and the main loop of the program (methods
start_calculations and test). The other class MechanicalEquilibrium contains
the mechanical equilibration algorithms.



6 Summary and conclusions

The main objective of the project was to improve the performance of the existing mechan-
ical equilibration algorithm. A numerical speedup by almost a factor of 100 was achieved
for the benchmark equilibration with a system size of 384 × 384 using the Nesterov’s
accelerated gradient descent and the L-BFGS method. Due to superlinear scaling for the
L-BFGS, I expect the speedup to be more significant for larger system sizes. The energy
convergence of L-BFGS is roughly 200 times faster for the benchmark equilibration.

Below is a brief summary of the work I did during this project:

• Implemented and tested the following numerical optimization algorithms (the num-
ber shows the approximate speedup compared to the simple steepest descent for
the benchmark equilibration; for other systems, the speedup can be very different)

– Steepest descent 1.0

– Steepest descent with line search ∼ 3.0

– Nonlinear conjugate gradient ∼ 1.0

– Adadelta ∼ 1.0

– Nesterov’s accelerated gradient descent ∼ 63

– L-BFGS ∼ 40

– L-BFGS + accelerated gradient descent + line search ∼ 75

• Implemented the whole PFC code and all of the optimization methods in python.

• Implemented the whole PFC code and the successful optimization methods in C++
with MPI support utilizing FFTW library.

• Tested the codes using the grain rotation setting.

• Tested using real space finite difference approximations for derivatives for calcu-
lating energy and the mechanical equilibrium constraint, concluding that this does
not work for the benchmark system.

20
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A Finite difference investigation

In Section 3.3, I described how to evaluate the energy and the mechanical equilibration
constraint in Fourier space. A benchmark mechanical equilibration (see Sec. 4.1) was
done with a steepest descent algorithm that used the 5-point stencil finite difference
formulas to calculate the mechanical equilibrium constraint. The formulas for first and
second derivatives are the following

u′|n ≈
1

12dx
(−un+2 + 8un+1 − 8un−1 + un−2) ; (A.1)

u′′|n ≈
1

12dx2
(−un+2 + 16un+1 − 30un + 16un−1 − un−2) . (A.2)

Expressing these formulas through k-space gives

u′|n ≈
N∑
k=1

ûk exp

(
2πi

kn

N

)[
1

12dx
(8 sin(kxdx)− sin(2kxdx))

]
; (A.3)

u′′|n ≈
N∑
k=1

ûk exp

(
2πi

kn

N

)[
1

6dx2
(16 cos(kxdx)− cos(2kxdx)− 15)

]
. (A.4)

The results can be seen in Figure A.1, where the energy was calculated in Fourier
space and should give a good estimate of the deviation from the converged solution shown
by the bottom dashed line. The FD algorithm jumps to higher energies at the start and
then slowly decreases. The convergence is much slower than for the k-space version and
it is unlikely that it will eventually converge to the correct solution. This test suggests
that it is not worth to use the FD formulas (even not as a preconditioner).
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Figure A.1: The energy (calculated via Fourier space) dependence on the run time for the
steepest descent (SD) using finite difference formulas and steepest descent using k-space
formulas.
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