
University of Tartu

Faculty of Science and Technology
Institute of Physics

Karl Ehatäht Hendrik Ehrpais
Kristjan Eimre Ants Remm

Word recognition using neural
networks

Instructors: Kaupo Voormansik
Karlis Zalite

Tartu 2014

1 Introduction
The objective of this group work was to create a word recognition program, that
would work with our voices and some specific words. We created feature vectors
from databases of four different words using signal processing algorithms, trained
an artificial neural network to be able to detect these words and later tested the
neural network by recording and testing new words. The neural network was
trained using a genetic algorithm. At the time of writing, our program is able to
recognize the given words with about 87% accuracy. Hopefully we can increase
the accuracy in the future by creating a larger database for words and improving
the algorithms used to make the feature vectors.

2 Method description

audio
database wisolation.exe

fvextractor.exe feature vector
database nntrainer.exe neural

network

pr.exe list of
words

audio
sample

Figure 1: The flowchart of the overall process

To solve the given problem for a set of words, we constructed an audio database,
which contains different pronunciations of said words, and 4 different programs (as
shown in figure 1). The first program, wisolation.exe performs word isolation on
the audio database. fvextractor.exe turns the audio database into a feature vector
database. The feature vector database is used by nntrainer.exe to train a neural
network. This neural network is used by the final program pr.exe, which takes an
audio sample as an input and outputs words corresponding to the sample. All of
these processes will be discussed in the following sections.

2.1 Word isolation

This section’s objective is to take the input from the files, distinguish and separate
the part of the audio file that contains the word we want to recognize. To achieve
this we cut off signals below a certain threshold volume value.

2

To make sure that we are also able to recognize words that may have gaps in
them, we increment a variable that checks if we have not been over the threshold
for some time. Because we have a controlled environment where we have control
over the input audio files and can set them at a required volume, we don’t need
to create any additional features for the first version of this program.

2.2 Feature vectors

This section considers feature extraction. Its implementation is mainly based on
[1] and some concepts are also adapted from [2] and [3].
The main idea of feature extraction is to transform input data into a reduced

representation set of features called feature vectors. In speech recognition the typ-
ical features are mel frequency cepstral coefficients (MFCCs). They reflect the
dynamic change of a speech signal. The method for finding those coefficients is
inspired by human auditory perception. Feature vectors may be calculated from
audio samples of any length (phoneme, word, phrase). We use a collection of fea-
ture vectors, because our aim is to recognize and differentiate a certain set of words.
Each such collection should roughly be the same for identical words pronounced
by different speakers. The algorithm of transforming audio samples into MFCCs is
quite straightforward. Some constraints are applied due to the peculiarities of the
neural network used in the next stage of program. The algorithm goes as follows:

1. Preemphasis.
Pre-emphasis filter is used to eliminate –6dB per octave1 decay of spectral
energy. It increases spectral energy of signal at higher frequencies. Given
original series of samples s(n), pre-emphasis filter is done with

ŝ(n) = s(n)− αs(n− 1) ,

where α alpha is some constant between 0 and 1. Recommended value for α
is 0.97, but it’s adjustable by the user. First sample from original series is
lost at this point.

2. Framing.
The resulting signal is then chopped into a number of speech segments (from
now on: frames), each having an overlap with its neighboring frame. The
width w of each frame should be 25. . . 40 ms and recommended overlap wo is
around 10 ms. If speech signal is sampled with frequency fs then each frame
(overlap) must contain N = fs · w (No = fs · wo) samples. A feature vector
is calculated for each frame.

1Number of octaves between frequencies f1 and f2 is log2
(

f2
f2

)
.

3

3. Energy.
Signal energy is one component of feature vector. It’s simply computed from
the sum of squares of samples:

e =
N−1∑
n=0

ŝ2(n) .

4. Windowing.
Each frame is multiplied with a windowing function W (n), thus cutting out
some portion of samples from the beginning and the end of frame. This is
justified since we have an overlap between successive frames and no infor-
mation is lost. Our implementation includes two windows functions: Hann
window

WHann(n) =
1

2

(
1− cos

(
2π

n

N

))
and Hamming window

WHamming = 0.53836− 0.46164 cos
(

2π
n

N

)
.

The aim of window function is to eliminate artifacts in the spectrum produced
by discrete Fourier transform (DFT).

5. STFT.
This stage may as well be named DFT, because STFT (short-time Fourier
transform) is combination of windowing and DFT-ing. We have implemented
brute-force DFT and its inverse (which we don’t use in our program, just
coded for completeness). We’ve also written Cooley-Tukey and Bluestein
FFT algorithm. The use of Cooley-Tukey is optional, and is set by the
user, because it modifies recommended values of frame width w such that
each frame contains power-of-two number of samples. Explicit formulas for
DFTs are given in our documentation of the code. We’ll denote the resulting
spectrum with Ŝ(ω).

6. Power spectrum.
Here we just take modulus squared on each element in spectrum series:

P (ω) = Re
(
Ŝ(ω)

)2
+ Im

(
Ŝ(ω)

)2
.

7. Mel filter bank.
The reason mel filter bank is used is that human ear is less sensitive at higher
frequencies. The relationship between sensitivity and frequency is thought
to be logarithmic — the human ear has high resolution at lower frequencies,
and vice versa. A common way to mimic this is to weigh each frame with
mel filter bank. It can be constructed as follows:

4

a) Fix the number of mel filters K you want to use. Recommend values
vary, but it’s typically 40. The user of our program may set other,
desired value. If the sampling frequency of original audio file is fs, then
we’ll take fg = fs/2 as our maximum frequency.

b) Compute the maximum mel frequency m corrsponding to fg as given by

m(f) = 2592 · log

(
1 +

f

700 Hz

)
. (1)

c) Set the average spacing in mel scale to be ∆m = m
K+1

. Compute center
frequencies

mc(k) = (k + 1) ·∆m ,

where k = 0 . . .K − 1. Revert back to frequency scale by computing
frequencies fc(k) with the inverse of (1).

d) Find nearest indices nc from P (ω) that correspond to fc(k).

e) With those indices, compute weighting matrix

Hωk =


ω−nck

nck+1
−nck

for nck ≥ ω < nck+1

nck+2
−ω

nck+2
−nck+1

for nck+1
≥ ω < nck+2

0 otherwise

.

Hωk is then multiplied by power spectrum: Ck = P (ω) ·Hωk. Ck-s are called
mel spectral coefficients.

Figure 2: The columns of the weighting matrix Hωk.

5

8. Log DCT.
The next step is

G(k) = log (|Ck|)

and apply DFT on G(k)-s. Those will be our MFCCs G̃(k). The space where
readily obtained MFCCs lie is quefrency domain.

9. Liftering.
Liftering (a reversed „filtering”) just emphasizes higher order coefficients.
Each MFCC is multiplied by

gk =

{
1 , k < 2
(k − 1)β , k ≥ 2

,

where we assumed that indices (i.e. mel filter numbering) start from k = 0.
Default value for β is 0.6 and it’s user-adjustable. At this point, energy
(obtained in third step) is appended to MFCCs.

10. Deltas.
Deltas are simply differences between frames in the past and in the future.
If we have M frames, then deltas for j-th frame are expressed by

∆G̃j(k) = G̃j+τ (k)− G̃j−τ (k) ,

where τ = 2 . . . 4 is (user-adjustable) time interval (in frame units). The
second order deltas are computed from first order deltas the same way. Deltas
are important because they reflect dynamical changes of MFCCs. But they
also have a downside — feature vectors that are fed into neural network must
be of the same length and we had to throw out first 2τ and last 2τ frames,
since it’s impossible to calculate derivatives for them.

11. Interpolation.
This part of our algorithm takes care that to each word corresponds the same
number of feature vectors. Otherwise the next stage of our program, neural
network, won’t work. Interpolation is done between the feature vectors of
different frames. This is justified when the number of frames in the word
doesn’t exceed the desired number of feature vectors (again, user-adjustable)
by more than two times.

2.3 Neural network

This section and the implementation corresponding to it is mainly based on the
reference [4].

6

We used a feedforward neural network in our work. A feedforward neural network
(just neural network from now on) is a computational model, which calculates a
specified number of numerical outputs for a given number of inputs. It consists
of three types of layers of neurons: the input layer, the hidden layers and the
output layer (see figure 3). In our task we used one hidden layer. Every neuron is
connected by edges to each neuron of the subsequent layer and every edge has a
numerical value or weight associated with it.

input1

hidden1

hidden2

hidden3

hidden4 output1

output2

input2

input3

Figure 3: An example neural network.

Input neurons are given values by an external method (in our case, the inputs
are words’ feature vector2 coefficients). All other (hidden and output) neurons’
values are calculated based on the values of the preceding layer’s neurons and the
weights of the incoming edges as

a =
n∑
i=1

wixi, (2)

where n is the number of neurons in the preceding layer, xi is the value of the
i-th neuron in that layer, wi is the corresponding weight of the edge that connects
the i-th neuron and the currently evaluated neuron and a is the preliminary value
of the neuron or activation. To get the value of the current neuron, a sigmoid

2From this part on, one feature vector will correspond to one pronuncation of a word. Previously
it was used in a slightly different meaning (multiple feature vectors corresponded to one
pronunciation).

7

function (see figure 4) needs to be used on a:

x =
1

e−a/p + 1
, (3)

where x is the value of the currently evaluated neuron and p is a parameter, which
controls the curve. We used the value of p = 1.0. The sigmoid function is needed
to introduce non-linearity in the network. Otherwise the output could only be a
linear combination of the inputs.

Figure 4: The sigmoid function.

If the number of layers, and neurons per layer is constant and selected as the
external parameters require, then the neural network is completely specified by its
weights.
Ultimately, what we want the neural network to accomplish is that when we

input any of a words’ feature vector (different feature vectors represent different
pronunciations of the word) into it, then it would output an unique combination
of numbers (identifier) specific to the word, or in our case, all zeros except for one
1.0, which corresponds to the word. This means that the neural network needs to
have a very specific set of weights, which we will find using a genetic algorithm,
discussed in the next section.

2.4 Genetic algorithm

This section is also partially based on the material in the reference [4].
The genetic algorithm we used is described in the flowchart in figure 5. The spec-

imens are neural networks and their genomes (or genes) consist of their weights.
The genetic algorithm needs a way to compare how well different specimen

perform in their tasks and based on that, the more successful specimen have a

8

create a population with random genomes

population of neural networks reference database with words'
 feature vectors and unique identifiers

evaluate every NN's fitness
 by using the database

output the neural network
 with the highest fitness

Is the best fitness satisfactory?

select two NNs
(higher probability for higher fitness)

make a baby by combining
 the parents' genomes (crossover)

mutate the baby

add the baby to
 the new population

Is the new population full?

yes

no

no

yes

Figure 5: The genetic algorithm we used.

higher probability to pass on their genes to the next generation. To accomplish
this, every neural network will be given a fitness, which is found using a premade
database, which includes several words and the feature vectors corresponding to
each of them. Neural networks’ number of outputs matches the number of words.
Each word is given a unique combination of outputs (identifier), in our case, all

9

zeros except for the i-th output, which corresponds to the i-th word, and it’s value
is 1.0.
To calculate a neural network’s fitness, we first find the neural network’s score s

by summing the average of squares of differences of each feature vector’s outputs
and the words’ desired outputs (or their unique identifiers) and divide it by the
number of words:

s =
1

N

N∑
i=1

(
1

Nfvi

Nfvi∑
j=1

(ωωωij − di)
2

)
, (4)

where N is the number of words, Nfvi is the number of feature vectors of the
i-th word, ωωωij is the neural network’s output vector corresponding i-th word’s j-
th feature vector and di is the i-th word’s desired output vector, or its unique
identifier. The divisions are needed to normalize the score so it doesn’t depend on
the number of feature vectors or words.
And because the fitness needs to be higher for a better performing specimen,

then we chose to calculated it like this:

f = 100e−10s, (5)

so it would be 100 at the best score (0) and reasonably low at the worst score.
Now we have a population of neural networks and each of them have a fitness.

To find a new generation of networks, we make a roulette-wheel [5] selection to
select two parent networks, a mother and a father. Based on these networks’ genes,
a new baby network is formed. With the probability of pc, a crossover will occur
at a random point in the mother’s genes. Until that point, the baby gets the
mother’s genes (or weights) and from that point on, it gets the father’s genes. If
no crossover occurs, the baby is its mother’s clone.
After that, the baby is mutated. It means that each of its genes have, with a

probability of pm, to change a little. After mutation the baby is put into the new
population.
This process is repeated until a new population is formed and the cycle starts

again until a neural network with a satisfactory fitness is found.
We also implemented an option to use elitism. It transfers a specified number

of a generation’s best networks into the next one without changing them.

2.4.1 Reference fitness

We had a problem with the previously described algorithm. The output neural
network was too specialized and it had trouble detecting different pronunciations
of the words from the ones we used to train it with.
Therefore we made a reference database. It consists of the same words but

the feature vectors are different from the ones in the main database. When we

10

calculated the fitness according to the main database, we also calculated a reference
fitness (which did not affect the training in any way) according to the reference
database. And when the improved algorithm finished training, it outputted the
neural network, which had the highest sum of both, the normal fitness and the
reference fitness.

3 Results
To test the resulting program, we made a testfile (with the same voices as the
program was trained with) and ran the program on it. Out of 46 words, it correctly
guessed 40. That is about a 87% success rate.

References
[1] B. Plannerer. An Introduction to Speech Recognition. 2005.

[2] Todor Ganchev, Nikos Fakotakis, and George Kokkinakis. “Comparative eval-
uation of various MFCC implementations on the speaker verification task”.
In: in Proc. of the SPECOM-2005. 2005, pp. 191–194.

[3] Zhenhao Ge. Development of Automatic Speech Evaluation System. 2008.

[4] ai-junkie. 2014. url: http://http://www.ai-junkie.com/.

[5] Wikipedia - Fitness proportionate selection. 2014. url: http://en.wikipedia.
org/wiki/Fitness_proportionate_selection.

11

http://http://www.ai-junkie.com/
http://en.wikipedia.org/wiki/Fitness_proportionate_selection
http://en.wikipedia.org/wiki/Fitness_proportionate_selection

	Introduction
	Method description
	Word isolation
	Feature vectors
	Neural network
	Genetic algorithm
	Reference fitness

	Results

